## Physics of Planetary Systems — Exercises — Set 4

## Problem 4.1

(4 points)
Analyse the light curve for the star TOI $715\left(\mathscr{M}=0.23 \mathscr{M}_{\odot}\right)$. Overplot the phase-folded light curve with the model transit. Estimate the following quantities:
(a) transit duration,
(b) transit depth,
(c) orbital period of the planet candidate,
(d) orbital semi-major axis,
(e) stellar radius,
(f) transit probability,
(g) radius of the planet candidate,
(h) expected RV amplitude.

Hint: assume a circular orbit and an impact parameter $b=0.2$. You can use this Python script for the data retrieval and analysis: https://cloud.uni-jena.de/s/ g2HNNqBaCGCXisc.

## Problem 4.2

(3 points)
Find all possible power-law stationary solutions for surface density $\Sigma$, temperature $T$, and viscosity $v$ of accretion disks. Which of them are physical and which are not?

## Bonus problem 4.3

(2 extra points)
Estimate the sub-Keplerian rotation velocity $v_{\phi}\left(<v_{\mathrm{K}}\right)$ of a gas disk for stationary models where $T \propto r^{-\xi}$ and $\Sigma \propto r^{\xi-3 / 2}$.


Figure 1: Velocity maps of different CO isotopologues around MWC 480: (left) pure velocities, (middle) differences to Keplerian velocities, (right) deprojected. (Credit: TEAGUE et al. 2021).

