Astrometric search for extrasolar planets

Tristan Röll
Ralph Neuhäuser, Andreas Seifahrt, Guillermo Torres,
Rainer Köhler, Jacob Bean

Astrophysikalisches Institut und Universitäts - Sternwarte Jena

Young Planetary Systems Workshop,
Jena 2010
Astrometric Signal

\[\text{a}_{\text{wobble}} [\text{AU}] = \text{a}_{\text{comp}} [\text{AU}] \left(\frac{M_{\text{comp}}}{M_{\text{star}}} \right) \]
Astrometric Signal

\[a_{\text{wobble}} \, [\text{AU}] = a_{\text{comp}} \, [\text{AU}] \, \frac{M_{\text{comp}}}{M_{\text{star}}} \]

Astrometric Signal (circular orbit)

\[\Theta \, [\text{mas}] = 2 \times a_{\text{wobble}} \, [\text{mas}] = 1.91 \times \frac{a_{\text{comp}}}{[\text{AU}]} \, \frac{[\text{pc}]}{d} \, \frac{M_{\text{comp}}}{[M_{\text{J}}]} \, \frac{[M_{\odot}]}{M_{\text{star}}} \]
Astrometric Signal (circular orbit)

\[\Theta [\text{mas}] = 2 \times a_{\text{wobble}} [\text{mas}] = 1.91 \times \frac{a_{\text{comp}} [\text{AU}]}{d} \frac{M_{\text{comp}} [\text{MJ}]}{M_{\star}} \]

Example

Jupiter with Sun seen from 5 pc / 100 pc: \[\Theta = 2 \text{ mas} / 0.1 \text{ mas} \]

Earth with Sun seen from 5 pc: \[\Theta = 1.2 \mu\text{as} \]
Exoplanet Detection - Sensitivity

- Θ(50 pc) = 1 mas
- Θ(10 pc) = 100 µas
- Θ(5 pc) = 1 µas
- K = 10 m/s
- K = 1 m/s
- K = 10 cm/s
- ∆F / F ≃ 1 %
- ∆F / F ≃ 0.1 %
- ∆F / F ≃ 0.01 %

(data from exoplanet.eu)
First Detection of an Astrometric Companion

Friedrich Wilhelm Bessel (1784-1846)

1844
periodic perturbation in the proper motions of Sirius and Procyon

Conclusion
existence of unseen companion orbiting the star

Sirius A, Sirius B
Parallax, Proper Motion, Acceleration, and Orbital Motion of Barnard’s Star

Peter van de Kamp

Sprout Observatory, Swarthmore College, Swarthmore, Pennsylvania
(Received 31 December 1968)

Twenty-four early plates (1916–1919) and thirty consecutive years of photographic observations of Barnard’s star covering the interval 1938–1967 confirm orbital motion with a period of 25 years and semi-axis major of 0".0275. The total number of plates is 3036, with 10 452 exposures, taken on 766 nights, with a total weight of 2056. Assuming a value of 0.15 ☉ for the mass of Barnard’s star, the mass of the companion is found to be 0.0016 ☉, or 1.7 times the mass of Jupiter.
Parallax, Proper Motion, Acceleration, and Orbital Motion of Barnard’s Star

Peter van de Kamp

Sproul Observatory, Swarthmore College, Swarthmore, Pennsylvania

(Received 31 December 1968)

Twenty-four early plates (1916–1919) and thirty consecutive years of photographic observations of Barnard’s star covering the interval 1938–1967 confirm orbital motion with a period of 25 years and semi-axis major of 0°0275. The total number of plates is 3036, with 10 452 exposures, taken on 766 nights, with a total weight of 2056. Assuming a value of 0.15 ☉ for the mass of Barnard’s star, the mass of the companion is found to be 0.0016 ☉, or 1.7 times the mass of Jupiter.

- Sproul refractor (diameter: 61 cm, focal length: 10.9 m)
Twenty-four early plates (1916–1919) and thirty consecutive years of photographic observations of Barnard's star covering the interval 1938–1967 confirm orbital motion with a period of 25 years and semi-axis major of $0\rlap{.}^\circ0275$. The total number of plates is 3036, with 10 452 exposures, taken on 766 nights, with a total weight of 2056. Assuming a value of 0.15 \odot for the mass of Barnard's star, the mass of the companion is found to be 0.0016 \odot, or 1.7 times the mass of Jupiter.

- Sproul refractor (diameter: 61 cm, focal length: 10.9 m)
- never confirmed by other groups (Gatewood et al., 1973)
Parallax, Proper Motion, Acceleration, and Orbital Motion of Barnard’s Star

Peter van de Kamp

Sproul Observatory, Swarthmore College, Swarthmore, Pennsylvania
(Received 31 December 1968)

Twenty-four early plates (1916–1919) and thirty consecutive years of photographic observations of Barnard’s star covering the interval 1938–1967 confirm orbital motion with a period of 25 years and semi-axis major of 0.0275. The total number of plates is 3036, with 10 452 exposures, taken on 766 nights, with a total weight of 2056. Assuming a value of 0.15 ☿ for the mass of Barnard’s star, the mass of the companion is found to be 0.0016 ☿, or 1.7 times the mass of Jupiter.

- Sproul refractor (diameter: 61 cm, focal length: 10.9 m)
- never confirmed by other groups (Gatewood et al., 1973)
- detection of systematic errors (Hershey, 1973)
Hubble Space Telescope (launch: 1990)
Currently the only telescope, which already delivers successful applications of astrometry regarding exoplanets.

- Gl 876 b (Benedict et al., 2002)
- 55 Cnc d (Mc Arthur et al., 2004)
- Epsilon Eridani b (Benedict et al., 2006)
Spaced based Astrometry

Hubble Space Telescope (launch: 1990)
Currently the only telescope, which already delivers successful applications of astrometry regarding exoplanets.

- Gl 876 b (Benedict et al., 2002)
- 55 Cnc d (Mc Arthur et al., 2004)
- Epsilon Eridani b (Benedict et al., 2006)
Hubble Space Telescope
(launch: 1990)
Currently the only telescope, which already delivers successful applications of astrometry regarding exoplanets.

- Gl 876 b
 (Benedict et al., 2002)
- 55 Cnc d
 (Mc Arthur et al., 2004)
Spaced based Astrometry

Hubble Space Telescope (launch: 1990)

Currently the only telescope, which already delivers successful applications of astrometry regarding exoplanets.

- Gl 876 b
 (Benedict et al., 2002)
- 55 Cnc d
 (Mc Arthur et al., 2004)
- Epsilon Eridani b
 (Benedict et al., 2006)
Spaced based Astrometry

HD 33636 b
RV planet candidate with $M \sin i = 9.3 \, M_J$

Bean et al. 2007 determined with astrometry a true mass of $M_{\text{true}} = 142 \pm 11 \, M_J$.

Tristan Röll (AIU Jena)
Spaced based Astrometry

HD 33636 b

RV planet candidate with $M \sin i = 9.3 \, M_J$

Bean et al. 2007

determined with astrometry a true mass of $M_{true} = 142 \pm 11 \, M_J$
Astrometric Exoplanet Search at the AIU Jena

Targets

nearby stellar multiple systems (distance < 100 pc)
Targets

nearby stellar multiple systems (distance < 100 pc)

Telescope and Instruments
Targets

nearby stellar multiple systems (distance < 100 pc)

Telescope and Instruments

- single 8 m apertures (VLT and SUBARU)
Astrometric Exoplanet Search at the AIU Jena

Targets

nearby stellar multiple systems (distance < 100 pc)

Telescope and Instruments

- single 8 m apertures (VLT and SUBARU)
- AO assisted NIR imager
Astrometric Exoplanet Search at the AIU Jena

Targets

nearby stellar multiple systems (distance < 100 pc)

Telescope and Instruments

- single 8 m apertures (VLT and SUBARU)
- AO assisted NIR imager
- NIR narrow band filter
Astrometric Exoplanet Search at the AIU Jena

Targets

nearby stellar multiple systems (distance < 100 pc)

Telescope and Instruments

- single 8 m apertures (VLT and SUBARU)
- AO assisted NIR imager
- NIR narrow band filter

Calibration

old globular cluster (47Tuc and M15)
Astrometric Exoplanet Search at the AIU Jena

"Wobble"-Orbit

„Wobble“-Orbit
Astrometric Exoplanet Search at the AIU Jena

"Wobble"-Orbit

„Wobble“-Orbit
Astrometric Exoplanet Search at the AIU Jena

„Wobble“-Orbit
First Target System: HD 19994 A&B

- **P**_{binary} \geq 1400 \text{ years}
- distance \approx 22.6 \text{ pc}
- M_A \approx 1.34 M_\odot, \quad M_B \approx 0.4 M_\odot

RV planet candidate HD 19994 Ab
Mayor et al. (2004)

- P_{pl} \approx 535 \text{ days}
- a_{pl} \approx 1.4 \text{ AU}
- m \sin i \approx 1.7 M_{Jup}

Expected Astrometric Signal:
- \Theta(\iota = 90^\circ) \approx 150 \mu\text{as}
- \Theta(13 M_{Jup}) \approx 1.2 \text{ mas}
First Target System: HD 19994 A&B

Pbinary \(\geq \) 1400 years

distance \(\simeq \) 22.6 pc

\(M_A \simeq 1.34 \, M_\odot \), \(M_B \simeq 0.4 \, M_\odot \)

RV planet candidate HD 19994 Ab

Mayor et al. (2004)

\(P_{pl} \simeq 535 \) days

\(a_{pl} \simeq 1.4 \) AU

\(m \sin \, i \simeq 1.7 \, M_{Jup} \)

Expected Astrometric Signal:

\(\Theta(i = 90^\circ) \simeq 150 \, \mu \text{as} \)

\(\Theta(13 \, M_{Jup}) \simeq 1.2 \, \text{mas} \)
HD 19994 A&B - Astrometric measurements

HD19994 A & (BC) - Separation

Sep [pixel]

HD19994 A & (BC) - Delegation Measurements

Deviation [mas]

Residual [µas]

Time [MJD]

Tristan Röll (AIU Jena)

Astrometric search for exoplanets
HD 19994 B&C - Speckle Interferometry

HD19994 B & C - Separation

(speckle interferometry program written by Rainer Köhler)

Tristan Röll (AIU Jena)
HD 19994 B&C - Radial Velocity (CRIRES, VLT)

HD1994 B & C - RV

m_{comp} / M = 0.605
Ecc = 0.36
Inc [deg] = 108.63
P [days] = 378.1
a_{total} [AU] = 0.97
\omega [deg] = 335.9

(radial velocity data by Andreas Seifahrt and Jacob Bean)
HD 19994 B - Wobble Orbit

\[P \text{ [days]} = 378.07 \pm 0.64 \]

\[m_C \text{ [M}_\odot] = 0.326 \pm 0.012 \]

\[M_B \text{ [M}_\odot] = 0.54 \pm 0.014 \]

\[\text{Inc [deg]} = 108.58 \pm 0.51 \]

\[\text{Ecc} = 0.36 \pm 0.014 \]

\[d \text{ [pc]} = 20.11 \pm 0.30 \]

\[0 - 2 - 4 - 6 \]

\[2 \quad 4 \]

\[X_{\text{app}} \text{ [mas]} \]

\[Y_{\text{app}} \text{ [mas]} \]

(S \leftrightarrow N)

Astrometric search for exoplanets
HD 19994 is a triple system, harboring one exoplanet

- P [days] = 378.07 ± 0.64
- mC [M☉] = 0.326 ± 0.012
- MB [M☉] = 0.54 ± 0.014
- Inc [deg] = 108.58 ± 0.54
- Ecc = 0.36 ± 0.014
- d [pc] = 20.11 ± 0.30
Exoplanet Detection - Sensitivity

Astrometric search for exoplanets

(data from exoplanet.eu)
Earth’s Atmospheric Turbulence’s

(by Tyson: “Introduction to Adaptive Optics”)

\[
\begin{align*}
\theta_0 \text{ (μrad)} &\quad f_G \text{ (Hz)} \\
(\text{cm}) &\quad r_0 \text{ (cm)} \\
\lambda \text{ (μm)} &
\end{align*}
\]
Extreme case: Two blackbodies with $T_{\text{eff}} = 2000 \, \text{K}$ and $T_{\text{eff}} = 20000 \, \text{K}$
Differential Chromatic Refraction

ESO Ks Filter

ESO NB2.17 Filter

Tristan Röll (AIU Jena)
HD 19994 A&B - Astrometric measurements

HD19994 A & (BC) - Position Angle

Angle [deg]

Deviation [deg]

Residual [deg/1000]

Time [MJD]

Tristan Röll (AIU Jena)

Astrometric search for exoplanets
HD 19994 B&C - Speckle Interferometry

HD19994 B & C - Position Angle

Time [MJD]

Residual [deg]

(speckle interferometry program written by Rainer Köhler)

Tristan Röll (AIU Jena) Astrometric search for exoplanets