Physics of Planetary Systems - Exercises — Set 1

Problem 1.1
 (1 point)

Why are there so many different exoplanet detection methods in use?

Problem 1.2

(3 points)
Go to
http://www.exoplanet.eu
or
https://exoplanetarchive.ipac.caltech.edu and plot the orbital periods versus semi-major axes for planets discovered via radial velocity surveys.
(a) Why is there such a strong correlation?
(b) Why is there scatter about the correlation?

Bonus point: what does this tell you about the sample of planet host stars?

Problem 1.3

(1 point)
The typical mass of a giant molecular cloud is $10^{4} \ldots 10^{6} M_{\odot}$, the typical size is $10 \ldots 100 \mathrm{pc}$. Estimate the mean stellar density of stars in the midplane of the Milky Way (i.e. the number of stars per $\left.\mathrm{pc}^{3}\right)$. What limits the accuracy of your estimate?

Figure 1: The Great Nebula in the constellation of Orion. The Orion Nebula harbors many so-called stellar nurseries, which contain hydrogen gas, hot young stars, protoplanetary disks, and stellar jets. (Image: hubblesite.org)

