Celestial Mechanics - Exercises

Alexander V. Krivov \& Torsten Löhne ${ }^{1}$

Distributed: $\mathbf{2}$ Nov 2023. Due: 9 Nov 2023.

Unit 3

Problem 3.1

Consider Neptune and Pluto. The orbital periods and eccentricities of these objects are:
Neptune: $P_{\mathrm{N}}=165$ years, $e_{\mathrm{N}}=0.00$; Pluto: $P_{\mathrm{P}}=248$ years, $e_{\mathrm{P}}=0.25$.
(a) Compare the minimum and the maximum distances of Neptune and Pluto from the Sun. (1 point)
(b) Could Pluto collide with Neptune? Which other criteria must be fulfilled for such a collision to occur? (1 point)
(c) Determine the ratio of Pluto's orbital velocities at its pericenter and apocenter. (1 point)

Problem 3.2

Imagine you are standing on a non-rotating spherical asteroid - that would be cool, right? ;) - with a radius R and mean density ρ, and you are throwing a stone at an angle α and a velocity v away from the surface. If the stone enters an elliptic orbit (that will eventually lead to fallback), what will be the semi-major axis and the eccentricity of that orbit? (2 points)
Bonus: at which distance from the starting point will the stone fall back to the surface? (+1 point)

[^0]
[^0]: ${ }^{1}$ torsten.loehne@uni-jena.de

