Celestial Mechanics – Exercises

Alexander V. Krivov & Torsten Löhne¹

Distributed: 2 Nov 2023. Due: 9 Nov 2023.

Unit 3

Problem 3.1

Consider Neptune and Pluto. The orbital periods and eccentricities of these objects are: Neptune: $P_N = 165$ years, $e_N = 0.00$; Pluto: $P_P = 248$ years, $e_P = 0.25$.

- (a) Compare the minimum and the maximum distances of Neptune and Pluto from the Sun. (1 point)
- (b) Could Pluto collide with Neptune? Which other criteria must be fulfilled for such a collision to occur? (1 point)
- (c) Determine the ratio of Pluto's orbital velocities at its pericenter and apocenter. (1 point)

Problem 3.2

Imagine you are standing on a non-rotating spherical asteroid – that would be cool, right? ;) – with a radius R and mean density ρ , and you are throwing a stone at an angle α and a velocity ν away from the surface. If the stone enters an elliptic orbit (that will eventually lead to fallback), what will be the semi-major axis and the eccentricity of that orbit? (2 **points**)

Bonus: at which distance from the starting point will the stone fall back to the surface? (+1 point)

¹torsten.loehne@uni-jena.de